DIELECTRIC ELASTOMERS The NERD setup: assessing the life time of electrodes for dielectric elastomer transducers [10594-20] Elastomeric diaphragm pump driven by fluid electrode dielectric elastomer actuators (FEDEAs) [10594-21] Electroactive Polymer Actuators and Devices (EAPAD) XX

Specialization continued intensified with Producer-Unit system Central producer replaced by a number of producers (associate producers) Desire to decrease costs; with a smaller number of films for each producer to supervise, he could keep tighter control over costs More different kinds of movies produced; producers made movies within their specializations Individuality creativity increased PRODUCER-UNIT SYSTEM . Producer-Unit system adopted by all Big 5 studios Allowed them to make even more films, more efficiently, than The producer-unit system: management by specialization after 1931

keik.pw

Jase Jerez
CONTENTS

Preface to the Second Edition

1. Statement of the Problem
 1.1 Introduction
 1.2 Assumptions
 1.3 Formulation of the Structural Response
 1.4 Formulation of the Acoustic Pressure Field
 1.5 The Integral Equation of the Structure-Fluid Interaction
 1.6 Historical Development of Structural Acoustics

2. The Wave Equation and Its Elementary Solutions
 2.1 Coupled Space and Time Dependence of Sound
 2.2 The One-Dimensional Wave Equation for Plane Waves
 2.3 Harmonic Time Variation
 2.4 Steady-State Plane Waves
 2.5 The Three-Dimensional Wave Equation
 2.6 The Uniformly Pulsating Spherical Source
 2.7 Specific Acoustic Impedance of Spherical Waves
 2.8 The Pressure Field Inside a Fluid-Filled Pulsating Sphere
 2.9 An Elementary Interaction Problem: Liquid-Filled Elastic Waveguides
 2.10 Cylindrical Waveguides: An Introduction to Two-Dimensional Pressure Fields

3. Applications of the Elementary Acoustic Solutions
 3.1 Introduction
 3.2 The Point Source
 3.3 Rigid and "Pressure-Release" Boundaries
 3.4 The Image Source Simulating a Rigid Boundary; Directivity
 3.5 The "Pressure-Release" Boundary
 3.6 Linear Arrays of Point Sources
 3.7 Far-Field Conditions
 3.8 Acoustic Power and Intensity
 3.9 The Pulsating Gas Bubble
 3.10 Dispersion and Attenuation: Sound Propagation in Bubble Swarms

4. The Pressure Field of Arbitrary Source Configurations
 4.1 General Formulation of the Radiation Problem
 4.2 The Free-Space Green's Function
 4.3 The Helmholtz Integral Equation
 4.4 The Sommerfeld Radiation Condition
 4.5 Physical Interpretation of the Helmholtz Integral Equation
 4.6 Approaches to the Solution of the Helmholtz Integral Equation
 4.7 Analytical Solution of the Helmholtz Integral Equation
 4.8 Rayleigh's Formula for Planar Sources
 4.9 The Scattered Field

5. Planar Sound Radiators
 5.1 Source Geometry and Analytical Formulations
 5.2 Pressure Field of the Circular Piston Using Rayleigh's Formulation
 5.3 The Transform Formulation of Axisymmetric Pressure Fields
 5.4 The Transform Solution of the Circular Piston
 5.5 The Far-Field of Rectangular Radiators Evaluated by Rayleigh's Formula; the Rigid Piston
 5.6 The Transform Solution of Rectangular Sound Radiators
 5.7 Equivalence of Rayleigh's and the Stationary-Phase Formulations of the Far-Field
 5.8 The Far-Field of Rectangular Radiators Displaying a Sinusoidal Acceleration Distribution
 5.9 Physical Interpretation of This Solution; Coincidence
 5.10 Other Standing-Wave Configurations of Rectangular Radiators
 5.11 The Infinite Planar Radiator with a Sinusoidal Acceleration Distribution
 5.12 The Radiating Strip of Infinite Length and Finite Width
 5.13 Acoustic Resistance of Circular Pistons and of Surface-Radiating Rectangular Source Configurations with Sinusoidal Acceleration Distributions
 5.14 Acoustic Resistance of Edge-Radiating Rectangular Source Configurations with Sinusoidal Acceleration Distributions
 5.15 The Resistance of Corner-Radiating Rectangular Source Configurations

6. Convex Sound Radiators
 6.1 Characteristics of Convex Boundaries
 6.2 The Green's Function for the Spherical Radiator
 6.3 The Pressure Field of a Spherical Radiator
 6.4 Circular Piston and Point Sources on a Spherical Baffle
 6.5 The Radiation Loading of Spherical Radiators
 6.6 Concentrated Force Applied to the Acoustic Medium
 6.7 Cylindrical Radiators with Spatially Periodic Configurations
 6.8 Radiation Loading of Infinite Cylinders with Standing-Wave Configurations
 6.9 Transform Formulation of the Pressure Field of Cylindrical Radiators
 6.10 Stationary-Phase Approximation to the Far-
Preface to the Second Edition

Like the 1972 (first) edition, this text is intended for the applied physicist and engineer acquainted with the mathematical tools found in graduate textbooks. A familiarity with elementary theory of vibrations and strength of materials is desirable. No prior acquaintance with acoustics is expected from the reader.

The primary difference between this book and more familiar texts is the space assigned to the effect of radiation loading exerted by the ambient fluid on the vibrations of elastic structures and the resulting modification of radiated and scattered pressures. Unlike the standard modern acoustic texts, this book returns to the tradition of Raleigh's Theory of Sound by covering the vibrations of elastic shells. The presentation of plate vibrations includes the Timoshenko-Mindlin correction required to generate meaningful high frequency results. The chapters dealing with acoustics are self-contained. They address primarily sound radiation and scattering, to the exclusion of numerical solutions, statistical techniques, and consequently flow-related phenomena and other broad-band excitations.

Even though the original title has been retained as being still appropriate to the material covered, there are substantial differences from the 1972 edition. To retain the manageable size of the original edition, the theories of plates and shells have been combined into a single chapter and the chapter dealing with acoustic transients has been dropped. There is an increased emphasis on asymptotic solutions. Acoustics in the first edition was limited to rigorously tractable geometries: the plane, the cylinder, and the sphere. Had we wanted to discuss radiation and scattering by slender bodies of revolution, we would have had to use prolate spheroidal wave harmonics where applicable, and for nonspheroidal geometries we would have referred readers to papers using numerical methods. These configurations are covered in this new edition, but in preference to rigorous formulations, the pressure fields are computed asymptotically by means of simple mathematical models that are solvable in terms of familiar cylinder functions. The chapter on sound radiation by submerged plates has been extensively rewritten to incorporate some of the new results in this area developed over the past decade-in particular, a closer examination of the near-field, the effect of stiffeners and compliant layers, and the relation of load distribution to far-field directivity and acoustic power. The more concise analytical treatment of sound radiation by simply supported cylindrical shells has been supplemented with a study of low-frequency radiation by free-floating, not necessarily cylindrical shells of revolution. Other new subjects covered in this second edition are the acoustics of bubble swarms, the propagation of sound waves in elastic pipes, and the insertion loss of finite panels. Both Rayleigh and Kirchhoff scattering receive more extensive treatment. Sound radiation by a source placed in a planar elastic baffle is used to illustrate the reciprocity principle, which is then used to analyze the far-field of sources located on elastic spherical and cylindrical baffles. The introductory chapter has been supplemented with a historical review of the development of structural acoustics.
Except for the extensive bibliography associated with that historical section, references listed at the end of each chapter are intended to supplement the material in this text either by providing the point of departure for the analysis presented here or by extending the analysis to areas not covered. Since, with the exception of the mathematical foundation, the development is relatively self-contained (the required knowledge of acoustics and theory of structures being derived or restated in the text), the references cited at the outset of an analysis are primarily mathematical in nature, thus sparing the reader the task of correlating the notations used in different texts on acoustics and plate and shell theory.

While our main goal is to present the underlying theories, we illustrate their application by means of problems selected for their practical interest. We hope to provide readers with the analytical tools for studying practical problems of interest to them. If an apology is needed for not having included those particular problems, we gladly accept the reproach that Shakespeare has Hamlet address to Horatio: "There are more things on heaven and earth, Horatio, than are dreamt of in your philosophy."

We are happy to acknowledge the moral and financial support of individuals and agencies within the U.S. Navy that enabled us to generate much of the material that is not part of the acoustician's stock in trade. Finally, it is with pleasure that we acknowledge the consistent helpfulness and patience displayed by our respective coworkers: J.M. Garrelick, J.E. Cole, III, and Rudolph Martinez at Cambridge Acoustical Associates, Inc., and numerous staff members at the David W. Taylor Naval Ship Research and Development Center.

Miguel C. Junger, Cambridge, Massachusetts
David Feit, Bethesda, Maryland

September 1985

© Acoustical Society of America
Miguel C. Junger, David Feit. This text originated from the need to provide classroom material for courses combining acoustics with vibrations and shock response of structures. It is the only text that describes in detail the interface between structural vibrations and acoustics. The emphasis is on structure-fluid interactions in both radiation and scattering problems. Although the mathematical treatment is not restricted to any particular acoustic medium, the physical interpretations developed are weighed on the side of those fluids (such as water) that exert radiation loading of sufficient m The Proceedings of the 2nd Symposium on Fluid-Structure-Sound Interactions and Control largely focuses on advances in the theory, experimental research and numerical simulations of turbulence in the contexts of flow-induced vibration, noise and their control. This includes several practical areas for interaction, such as the aerodynamics of road and space vehicles, marine and civil engineering, nuclear reactors and biomedical science etc. One of the particular features of these proceedings is that it integrates acoustics with the study of flow-induced vibration, which is not a common practice
Muriel James, Ed.D, is a psychotherapist and international workshop leader, a minister in the United Church of Christ, and past president of the International Transactional Analysis Association. Dorothy Jongeward, Ph.D., one of the first management consultants to focus on the interpersonal side of productivity, taught for many years on the extension faculty of the University of California, Berkeley.

In Intelligence Analysis for Tomorrow: Advances from the Behavioral and Social Sciences, the NRC offers Knowledge and Diplomacy.

In the United States, chronic diseases currently account for 70 percent of all deaths, and close ... (This is true, but is intended as abuse so that the hearer will be more sympathetic.)

How to Win Every Ar Act like a Lady, Think like a man.

Introduction Everything You Need to Know About Men and Relationships Is Right Here