Dedicated to Professor Max Gunzburger on the occasion of his 60th birthday

"What we do is develop, implement, analyze, test, and apply new algorithms that can be used to better solve problems, thus enabling advances in science and engineering."

-Max Gunzburger

FOREWORD

This peer-reviewed special issue is dedicated to Professor Max D. Gunzburger in celebration of his sixtieth birthday and his distinguished career achievements.

Professor Gunzburger is a preeminent computational and applied mathematician of our times with numerous groundbreaking and seminal works. He is a pioneer, leading researcher and instigator of several important research directions that include: theory and applications of centroidal Voronoi tessellations, analysis and computational methods for the control of fluids, mathematical modeling and numerical studies of superconductivity, and finite element least squares methods, among many others.

Professor Gunzburger's research accomplishments are incredibly broad in both subjects and research methodologies. The topics of his research span a wide spectrum of scientific areas including fluid mechanics, superconductivity, elasticity and
structures, and material science, just to name a few. His research aspects involve modeling, hard and soft analysis, the design of ingenious, efficient and effective computational schemes, rigorous numerical analysis and error estimations, or whatever the problem at hand calls for. The attached list of Professor Gunzburger’s publications speaks vividly of his distinguished research career.

Professor Gunzburger has been an enthusiastic promoter and practitioner of global computational mathematics, training and collaborating with students and researchers of different nationalities and of diverse cultural or educational backgrounds. He has constantly and unselfishly contributed to the global dissemination of research in computational and applied mathematics, and his outstanding research leadership and tireless service has positively impacted the worldwide prospering of research in these areas.

The contributing authors of this special issue consist mostly of Professor Gunzburger’s former Ph.D students, postdoctoral fellows, and colleagues who at one time or another had the opportunity to collaborate with Professor Gunzburger on various research projects. This collection of research papers is an epitome testimony of Professor Gunzburger’s wide scope of research accomplishment and profound influence in the international research community on numerical analysis and on scientific and engineering modeling.

No doubt that great thoughts and ideas will continue to stream out of Professor Gunzburger’s beautiful mind, bringing his already distinguished career to an even higher plateau.

I would like to thank Professor Yanping Lin, the Editor-in-Chief of this journal, for his support and painstaking effort in the publication of this special issue. I also would like to thank all contributing authors and referees for their contributions and assistance.

Steve Hou
Iowa State University
Ames, Iowa
PUBLICATIONS OF MAX GUNZBURGER

Books

Optimal Control and Design, Birkha"user, Boston, 1995; edited with J. Borggaard, J. Burkardt, and J. Peterson.

Journal, book chapters, and selected proceedings articles

Motion of decaying vortex rings with non-similar vorticity distributions; *J. Engng. Math.* 6, 1972, 53-61.

Simulation by vortex rings of the unsteady pressure field near a jet; Progress in *Astronautics and Aeronautics* 43, AIAA and MIT, 1976, 47-64; with C. Liu and L. Maestrello.

Frequency modulation at a moving material interface and a conservation law for wave number; *J. Sound Vibration* 48, 1976, 169-178; with G. Kleinstein.

On the mathematical conditions for the existence of periodic fluctuations in nonuniform media; *J. Sound Vibration* 48, 1976, 345-357; with G. Kleinstein.

Application of the wavenumber jump condition to the normal and oblique interaction of a plane acoustic wave and a plane shock; *J. Sound Vibration* 53, 1977, 417-433; with G. Kleinstein.

Simulation of the pressure field near a jet by randomly distributed vortex rings; *AIAA J.* 17, 1979, 553-557; with Y. Fung and C. Liu.

A numerical study of the effects of curvature on the fluid dynamics of gas centrifuges; *Proc. 5-th Workshop on Gases in Strong Rotation*, U. of Virginia, 1983, 745-800; with J. Jordan and H. Wood.

Mixed finite element approximations for the biharmonic equation; *Proc. 5-th International Symposium on Finite Elements and Flow Problems*, U. of Texas at Austin, 1984, 281-286; with G. Fix, R. Nicolaides and J. Peterson.

The effects of curvature on the flow field in rapidly rotating gas centrifuges; *J. Fluid Mech.* 140, 1984, 373-395; with J. Jordan and H. Wood.

Issues in the implementation of substructuring algorithms for the Navier-Stokes equations; *Advances in Computer Methods for Partial Differential Equations* V, IMACS, 1984, 57-63; with R. Nicolaides.

Elimination with noninvertible pivots; *Linear Algebra Appl.* 64, 1985, 183-189; with R. Nicolaides.

Iterative penalty methods for the Stokes and Navier-Stokes equations; *Finite Element Analysis in Fluids*, University of Alabama, Huntsville, 1989, 1040-1045.

Control of temperature distributions along boundaries of engine components;

Approximation of boundary control and optimization problems for fluid flows;

Numerical solution of the boundary layer equations using the finite element method; *Advances in Finite Element Analysis in Fluid Mechanics* FED-123, ASME, 1991, 29-38; with E. Hytopoulos and J. Schetz.

Numerical solution of the incompressible boundary layer equations using the finite element method; *J. Fluids Engng.* 114 1992, 504-511; with E. Hytopoulos and J. Schetz.

Analysis of weighted least-squares finite element methods for the the Navier-Stokes equations; *Proc. 14th IMACS World Congress on Computational and Applied Mathematics*, Georgia Tech, Atlanta, 1994, 584-587; with P. Bochev.
Feedback control of fluid flows; *Proc. 14th IMACS World Congress on Computational and Applied Mathematics*, Georgia Tech, Atlanta, 1994, 716-719; with H.-C. Lee.

Discretization of cost and sensitivities in shape optimization; *Computation and Control IV*, Birkhauser, 1995, 43-56; with J. Burkardt and J. Peterson.

Least squares finite element methods for viscous, incompressible flows; *Proc. Fluids Engineering Division Summer Meeting, FEDSM97-3487*, ASME; with P. Bochev.

Adjoint methods; Design Optimal et MDO, Centre de Recherche en Calcul Appliqué, Montréal, 1998, 1-25.

Centroidal Voronoi tessellations: applications and algorithms; *SIAM Review* 41, 1999, 637-676; with Q. Du and V. Faber.

Optimization-based methods for multidisciplinary simulation and optimization; in *Proc. 8th Annual Conference of the CFD Society of Canada*, CERCA, Montreal, 2000, 689-694; with Q. Du and J. Lee.

Control and optimal design of flow systems with CFD, Short course notes, CERCA, Montreal, 2000.

Optimal control of stationary, low Mach number, highly nonisothermal viscous flows; *ESAIM:COCV* 5 2000, 477-500; with O. Imanuvilov.

Adjoint and sensitivity-based methods for optimization of gas centrifuges; *Proc. 7th Work. Separation Phenomena in Liquids and Gases*; Moscow Engineering Physics Institute, Moscow, 2000, 89-99; with H. Wood.

Shape design of channel flows for steady, incompressible flows; *Proc. 39th Conf. Decision and Control*, IEEE; with H. Kim and S. Manservisi.

Nucleation of superconductivity in finite anisotropic superconductors and the evolution of surface superconductivity toward the bulk mixed state; Phys. Rev. B 65 2002, 094514; with J. Clem, J. Deang, and V. Kogan.

On stabilized finite element methods for transient problems with varying time scales; Fifth World Congress on Computational Mechanics, (CD-ROM), IACM, Vienna, 2002; with P. Bochev and J. Shadid.

Model reduction by proper orthogonal decomposition coupled with centroidal Voronoi tessellation; Proc. Fluids Engineering Division Summer Meeting, FEDSM2002-31051, ASME, 2002; with Q. Du.

Probabilistic algorithms for centroidal Voronoi tessellations and their parallel implementation; Parallel Comput. 28 2002, 1477-1500; with Q. Du and L. Ju.

Reduced-order modeling of Navier-Stokes equations via centroidal Voronoi tessellation; in Recent Advances in Adaptive Computation, AMS, Providence, 2004, 213-224; with H. Lee.

Reduced-order models of large-scale computational systems, *SIAM News*, **38/5** 2005, 11; with K. Willcox.

Dedicated to Professor P. Neittaanmäki on His 60th Birthday. Editors: Repin, Sergey, Tiihonen, Timo, Tuovinen, Tero (Eds.) Free Preview. Presents applications in from nanotechnology to cosmology. Both the conference and this volume are dedicated to Professor Pekka Neittaanmäki on the occasion of his sixtieth birthday. It consists of five parts that are closely related to his scientific activities and interests: Numerical Methods for Nonlinear Problems; Reliable Methods for Computer Simulation; Analysis of Noised and Uncertain Data; Optimization Methods; Mathematical Models Generated by Modern Technological Problems. The book also includes a short biography of Professor Neittaanmäki. Show all. Table of contents (24 chapters). Table of contents (24 chapters). This work, which is an extension of a talk given at the 17th Conference on Operator Theory at Timisoara in June 98, illustrates the use of some groupoid techniques in the study of Cuntz-Krieger algebras. It only covers a limited part of the rich domain of the Cuntz-Krieger algebras and their generalizations. The homomorphism \(c : G(X, T) \to \mathbb{Z} \) is strongly surjective in the sense given there on \(\mathbb{Z} \). On the other hand, the reduction of \(G(X, T) \) to \(Y \) is a proper principal groupoid having as quotient space the complement \(\overline{U} \) of the domain \(U \). (ii) This is a well-known property of the \(C\alpha -\) algebra of an amenable groupoid (see e.g. [2]; 6.1.5). Gunzburger began his career at New York University as a research scientist and assistant professor of mathematics, a position he held from receiving his Ph.D. until 1971. He then spent two years working as a post-doctorate at the Naval Ordnance Laboratory before transferring to the Institute for Computer Applications in Science and Engineering at NASA until 1976. He then became an associate professor and professor of mathematics at the University of Tennessee, a position he held from 1976 to 1982[4].

\(^a\) Dedicated to Professor Max Gunzburger on the occasion of his 60th birthday, Forward: International Journal of Numerical Analysis & Modeling, Volume 4, Number 3-4 (PDF). Retrieved 2009-04-06. ^ a b c d e f "Max Gunzburger CV" (PDF).