Applications of Digital Image Processing XLI

Andrew G. Tescher
Editor

20–23 August 2018
San Diego, California, United States

Sponsored and Published by SPIE

Volume 10752
Part One of Two Parts

SPIE is an international society advancing an interdisciplinary approach to the science and application of light.
Contents

<table>
<thead>
<tr>
<th>Authors</th>
<th>xiii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conference Committee</td>
<td>ix</td>
</tr>
</tbody>
</table>

Part One

SESSION 1 OBJECT DETECTION AND TRACKING

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10752 02</td>
<td>Tomographic imaging with wireless sensor networks [10752-1]</td>
<td></td>
</tr>
<tr>
<td>10752 03</td>
<td>Monitoring refractory wear in a coke oven under high temperature [10752-2]</td>
<td></td>
</tr>
<tr>
<td>10752 04</td>
<td>Comparison of non-uniformity correction methods in midwave infrared focal plane arrays of high speed platforms [10752-3]</td>
<td></td>
</tr>
<tr>
<td>10752 05</td>
<td>Generating simulated SAR images using Generative Adversarial Network [10752-4]</td>
<td></td>
</tr>
<tr>
<td>10752 06</td>
<td>Robust night target tracking via infrared and visible video fusion [10752-6]</td>
<td></td>
</tr>
<tr>
<td>10752 07</td>
<td>Natural scene text detection and recognition with a three-stage local phase-based algorithm [10752-7]</td>
<td></td>
</tr>
<tr>
<td>10752 08</td>
<td>Automatic identification of diatoms using descriptors obtained in the plane of frequencies [10752-8]</td>
<td></td>
</tr>
</tbody>
</table>

SESSION 2 PLENOPTIC IMAGING

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10752 09</td>
<td>Three dimensional reconstruction using a lenslet light field camera [10752-9]</td>
<td></td>
</tr>
<tr>
<td>10752 0A</td>
<td>Canonical 3D object orientation for interactive light-field visualization [10752-10]</td>
<td></td>
</tr>
<tr>
<td>10752 0B</td>
<td>Steered mixture-of-experts for light field video coding [10752-11]</td>
<td></td>
</tr>
<tr>
<td>10752 0C</td>
<td>Analysis of motion vectors and parallel computing in pseudo-sequence based light field image compression methods [10752-12]</td>
<td></td>
</tr>
<tr>
<td>10752 0D</td>
<td>Light field image coding: objective performance assessment of Lenslet and 4D LF data representations [10752-13]</td>
<td></td>
</tr>
<tr>
<td>10752 0E</td>
<td>A graph learning approach for light field image compression [10752-14]</td>
<td></td>
</tr>
</tbody>
</table>
The perceived quality of light-field video services
Predicting 3D visual discomfort using natural scene statistics and a binocular model
Point cloud subjective evaluation methodology based on reconstructed surfaces
A novel methodology for quality assessment of voxelized point clouds
A digital hologram compression scheme for representation on the object plane

SESSION 3 VIDEO TRANSMISSION AND QUALITY OPTIMIZATION
Predicting the quality of images compressed after distortion in two steps
Spatial resolution adaptation framework for video compression
A user model for JND-based video quality assessment: theory and applications
Combining tile parallelism with slice partitioning in video coding
Performance comparison of objective metrics on free-viewpoint videos with different depth coding algorithms
Subjective and objective quality assessment of omnidirectional video
Video codec comparison using the dynamic optimizer framework
Geo-popularity assisted optimized transcoding for large scale adaptive streaming
Using modern motion estimation algorithms in existing video codecs
Using video quality metrics for something other than compression

SESSION 4 FUTURE VIDEO
Performance comparison of VVC, AV1, and HEVC on 8-bit and 10-bit content
Adaptive reshaping for next generation video codec
An adaptive quantization method for 360-degree video coding
On the adaptive selection of partitioning tree types for coding video color channels

An overview of end-to-end HDR

HDR compression in the JVET codec

Deep learning techniques in video coding and quality analysis

Machine Learning approach for global no-reference video quality model generation

Neural network based intra prediction for video coding

Intra prediction with deep learning

Video quality analysis framework for spatial and temporal artifacts

Efficient implementation of enhanced multiple transforms for video coding

Challenges of eye tracking systems for mobile XR glasses

Neural net architectures for image demosaicing

Identification of 3D objects using correlation of holograms

Real-time video stitching based on ORB features and SVM

A real-time perception system for autonomous cars targeting highways

A video smoke detection method based on structural similarity index determined by complexity of image

IRSUM: inter-frame registration based non-uniformity correction using spatio-temporal update mask

Optical surface inspection: A novelty detection approach based on CNN-encoded texture features

Aesthetic color templates for enhancing casual videos
Noise analysis of two pattern recognition methodologies using binary masks based on the fractional Fourier transform

SESSION 6 IMAGE RESTORATION, ENHANCEMENT, AND VISUALIZATION II

Stereo vision and Fourier transform profilometry for 3D measurement

High-resolution DMD-FPM system based on ring pattern phase retrieval algorithm

SESSION 7 NEW JPEG INITIATIVES

Why JPEG is not JPEG: testing a 25 years old standard

Overview of the JPEG XS core coding system subjective evaluations

Entropy coding, profiles, and levels of JPEG XS

Emerging image metadata standards activities in JPEG

JPEG Pleno: a standard framework for representing and signaling plenoptic modalities

A new objective metric to predict image quality using deep neural networks

SESSION 8 MEDICAL IMAGING

Noise removal of the x-ray medical image using fast spatial filters and GPU

Optimization of coded aperture in compressive x-ray tomography

Convolutional neural network based computational imaging spectroscopy

Magnetic resonance brain images algorithm to identify demyelinating and ischemic diseases

POSTER SESSION

Development of a method for constructing a 3D accurate map of the surrounding environment
Face recognition by using wavelet-subband booster

Crop row detection a bioinspired and data analysis approach

A correlation-based algorithm for detecting linearly degraded objects using noisy training images

Accuracy analysis of 3D object shape recovery using depth filtering algorithms

3D object reconstruction using multiple Kinect sensors and initial estimation of sensor parameters

An efficient detection of local features in depth maps

Removal of impulsive noise from color images with cascade switching algorithm

Extrinsic calibration and usage of a single-point laser rangefinder and single camera

Application of SRIO in real-time image processing

Development of methods for selecting features using deep learning techniques based on autoencoders

All-in-focus image reconstruction robust to ghosting effect

Polarization spectroscopy of blood and punctate douglas deepening in patients with ovarian tumors

Spectroscopic image criteria for the selection of patients with ovarian cancer for further molecular genetic studies

Polarization image processing of chordae tendinea of atrio-ventribular heart valves of the foetus

Laser polarimetry imaging in diagnostics of morphological structure of the heart valve tendinous cords of newborns

Polarization structural property of the images of chordae tendinea of the mitral and tricuspid heart valves of the infants

Polarization-interference images of optically anisotropic biological layers

System of biological crystals fibrillar networks polarization-correlation mapping

System of differential Mueller-matrix mapping of phase and amplitude anisotropy of depolarizing biological tissues

Accurate alignment of RGB-D frames for 3D map generation
Object tracking with composite optimum filters using non-overlapping signal models [10752-92]

High efficient energy compaction network for image transform [10752-93]

An algorithm of face recognition based on generative adversarial networks [10752-94]

An algorithm for selecting face features using deep learning techniques based on autoencoders [10752-95]

Stochastic and analytic modeling of atmospheric turbulence in image processing [10752-96]

Stabilization of median smoother via variational approach [10752-97]

Reducing number of points for ICP algorithm based on geometrical properties [10752-98]

Comparison of resolution estimation methods in optical microscopy [10752-99]

A point-to-plane registration algorithm for orthogonal transformations [10752-100]

A regularization algorithm for registration of deformable surfaces [10752-101]

Image dehazing using total variation regularization [10752-102]

Performance comparison of perceived image color difference measures [10752-103]

An efficient algorithm of 3D total variation regularization [10752-104]

Complex moments for the analysis of metal-mechanical parts [10752-107]

Breast thermography: a non-invasive technique for the detection of lesions [10752-109]

Smoke detection in compressed video [10752-111]

A sub-picture-based omnidirectional video live streaming platform [10752-115]

Capabilities and limitations of visual search in volumetric images: the effect of target discriminability [10752-116]
Digital image processing is a part of signal processing where we processes digital images using computer algorithms. The computer algorithms can be modified so that we can also change the appearance of the digital image easily and quickly. Digital image processing has numerous applications in different studies and researches of science and technology. Some of fields that use digital image processing include: biological researches, finger print analysis in forensics, medical fields, photography and publishing fields, astronomy, and in the film and game industries. Digital image processing has f 'Digital Image Processing succeeds in being an accessible but rigorous first course in the generation and manipulation of medical images. Dougherty moves seamlessly between gamma rays, radiation doses, picture archiving strategies, Boolean logic, Fourier transforms, and applications like mammography and angiography. â€¦ The chief strengths â€¦ are its clear and well-considered organisation, its accessibility to a wide variety of audiences, and its applicability to an array of imaging modalities and techniques. The book also has wonderful illustrations, particularly of how to enhance images in Interest in digital image processing methods stems from two principal applications areas. Improvement of pictorial information for human interpretation and, processing of image data for storage, transmission and representation for autonomous machine perception. In this section we will deal with issues like what is image processing, exactly, what is the force that is driving image processing innovative applications of image processing and problems faced by image processing. We shall see how image processing is bringing a drastic change in the fields of top microscopy, military, industries a