Mapping the Progression of Non-Carious Cervical Lesions

by

Malcolm. J. Grenness
B.D.Sc., L.D.S., M.Med.Sc.,
F.R.A.C.D.S.

Spatial Information Sciences Group
School of Geography and Environmental Science
(University of Tasmania)

Submitted in fulfilment of the requirements for the
Degree of Doctor of Philosophy

(June 2008)
Declaration

This thesis contains no material which has been accepted for the award of any other degree or diploma in any tertiary institution, and to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference is made in the text of the thesis.

Signed:

M.J. Grenness

Disclosure

The author Grenness is named on a patent associated with the use of materials with improved optical texture.

This Thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968.
Statement of Co-Authorship

The following people contributed to the publication of the work undertaken as part of this thesis:

<table>
<thead>
<tr>
<th></th>
<th>Candidate (Author 1)</th>
<th>Author 2</th>
<th>Author 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conception</td>
<td>> 90</td>
<td>< 10</td>
<td>< 5</td>
</tr>
<tr>
<td>Experimental design</td>
<td>> 90</td>
<td>< 5</td>
<td>< 5</td>
</tr>
<tr>
<td>Experimental work</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Writing</td>
<td>> 95</td>
<td>< 5</td>
<td>< 5</td>
</tr>
</tbody>
</table>

Grenness M.J., Osborn J.E. and Tyas M.J., 2005. Digital very close range photogrammetry of a test object incorporating optical texture. 7th Optical 3D Measurement Techniques, Oct 3-5, Vienna, Austria. (Chapter 6, not refereed)

<table>
<thead>
<tr>
<th></th>
<th>Candidate (Author 1)</th>
<th>Author 2</th>
<th>Author 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conception</td>
<td>> 90</td>
<td>< 10</td>
<td>< 5</td>
</tr>
<tr>
<td>Experimental design</td>
<td>> 90</td>
<td>< 5</td>
<td>< 5</td>
</tr>
<tr>
<td>Experimental work</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Writing</td>
<td>> 95</td>
<td>< 5</td>
<td></td>
</tr>
</tbody>
</table>

The undersigned agree with the above stated “proportion of work undertaken” for each of the above published manuscripts contributing to this thesis.

Signed:

M. J. Grenness

School of Geography and Environmental Science
University of Tasmania
Abstract

‘Non-carious cervical lesion’ (NCCL) is a term used to describe loss of hard tissue in the cervical one-third of teeth. NCCLs are commonly encountered in dental practice and frequently require clinical intervention. There are few reports of high quality mapping and monitoring of NCCLs, and dental practitioners currently have no reliable method for measuring and monitoring their progress. Improved understanding of the underlying causes and progression of NCCLs will rely on reliable and practical methods of mapping their topography and monitoring their progress.

NCCLs on the facial surfaces of teeth can be easily imaged, either directly or on cast replicas, and therefore may be well suited to mapping using a photogrammetric approach. A preliminary investigation led to the development of a casting material that incorporated optical texture so that photogrammetric image-matching techniques could be utilized.

Three-dimensional coordinate data for tooth replicas was successfully generated using the casting material, convergent stereoscopic photography and commercial digital photogrammetric software. Imaging was performed initially using a semi-metric 35 mm film camera, then a high-resolution digital SLR camera, and finally a fixed-base digital SLR stereo camera. The quality of the surface data and the capacity to align tooth surfaces was investigated. Two specific examples of NCCLs were mapped and monitored at baseline, 12 month and 24 month time periods.

For the film camera and the single digital camera, the photogrammetric solutions were not highly stable, with systematic height errors of up to 80 μm attributed to unstable exterior orientation. However, for the fixed-base stereo camera, model precision was shown to be in the order of 13 μm and the accuracy of surfaces derived from automatic measurement was approximately 3 μm. The error associated with aligning independent measurements of tooth surfaces was approximately 17 μm. Change detection
of the two NCCL surfaces was sensitive to 30 µm, with change ranging from 30 to 320 µm per annum for one surface and 30 to 70 µm per annum for the second surface. Different rates of change were clearly evident in different areas of the same surfaces. The replication, stereomagey, photogrammetric processing, and detection of changes to the surfaces were shown to be reliable and convenient.

The results of this investigation show that stereo-photogrammetric techniques can be applied to the mapping of NCCLs, and that the surfaces can be mapped at sufficient accuracy to enable change to be monitored. The two examples suggest that annual change detection studies will provide a clearer picture of the rate of progression and the geometry of progression and, in combination with other analytical techniques, a more detailed explanation of the natural history of non carious cervical lesions.
Acknowledgments

I wish to express my sincere gratitude to many persons whose generosity and helpfulness have contributed to this thesis.

I am extremely grateful to my supervisors, Dr. Jon Osborn and Professor Martin Tyas, for their invaluable guidance, advice, patience and understanding during the supervision of this thesis. Their deep knowledge and experience in their respective fields have been central to the arrival at an outcome far in excess of my initial expectations.

My thanks to the staff at the School of Geography and Environmental Studies, The University of Tasmania, for their kind support. I owe special thanks to Dr Tony Sprent for his assistance with the design and fabrication of components for the imaging equipment and to Dr. Christopher Watson and Assoc. Prof. Richard Coleman for assistance with MATLAB software programming. I thank Keith Bolton for preparation of photoplots.

I am indebted to John Farrow (School of Fine Art), Jeff Bester (Ash Bester Photographics), Fred Koolhof (Koolhof Enterprises), Alex Nazarov (Hobart Photographic Society) and the staff at Walch Optics (Hobart) for assistance and advice in photography, photographic accessories and lens design and application.

Thanks also go to Jason Birch and Yongru Huang of ADAM Technology P/L, Perth, Australia for technical support and modification of their software products, and to Dr. Harvey Mitchell from University of Newcastle for providing access to DS Match proprietary software.

Finally, I acknowledge my family, Susan, Alasdair and Emily, for their patience and forbearance of the many, many evenings and weekends where I disappeared to conduct the endless hours of modeling and analysis for this thesis.
Table of Contents

Chapter 1 Introduction...1
1.1 References... 3

Chapter 2 Literature Review..6
2.1 Non-carious cervical lesions...6
 Description, Terminology, Prevalence, Structure of teeth, Mechanisms of tooth surface loss, Experimental methods, Experimental models (Laboratory studies, In situ studies, Computer simulation, Clinical studies), Lesion initiation and progression, Monitoring the progression of non-carious cervical lesions, Discussion.
2.2 Mapping human teeth and objects of similar size..............................20
 Profile / Silhouette tracing, Measuring Microscopy, Contact stylus, Photogrammetry, Structured light (Tooth surface opaquing), Laser scanning, Confocal Laser Microscopy, Computed Tomography and Magnetic Resonance Imaging, Discussion.
2.3 Replicating teeth..33
 Impression materials, Casting materials, Dimensional accuracy (Linear measurement, Surface matching), Discussion.
2.4 Conclusion...40
2.5 References...41

Chapter 3 Aims and objectives ...56

Chapter 4 Preliminary investigations into the provision of optical texture on tooth replicas... 57
4.1 Trials with plaster replicas...58
4.2 Trials with epoxy resin..63
4.3 Camera systems..71
4.4 Conclusion...71
Table of Contents

Chapter 5 Stereo-photogrammetric mapping of tooth replicas incorporating texture ..70

Abstract

5.1 Introduction ...71

5.2 Method ..73

Preparation of tooth replicas and photo control, Image acquisition and camera calibration, Image matching and generation of 3D coordinate data, Accuracy and precision testing.

5.3 Results ..77

Camera calibration, Accuracy, Surface models.

5.4 Discussion ..83

Tooth Replicas, Image acquisition and interior orientation, Exterior orientation and model accuracy, Image matching and precision, Surface models.

5.5 Conclusion ..91

5.6 References ...91

5.7 Appendix ...96

5.7.1 Film photographic setup ..96

5.7.2 Image matching techniques ..97

Chapter 6 Digital very close range photogrammetry of a test object incorporating optical texture ..100

Abstract

6.1 Introduction ...101

6.2 Method ...104

6.3 Results ..107

6.4 Discussion ...113

6.5 Conclusion ...118

6.6 References ...118
Table of Contents

Chapter 7 **Calibration of a fixed-base stereo camera for tooth replicas** ... 121

7.1 Introduction.. 121

7.2 Method... 123

 Model generation and accuracy testing, Tooth surface modelling.

7.3 Results... 127

 Model accuracy, Model precision, Image and object space errors, Tooth surface modelling.

7.4 Discussion... 133

 Target measurement, Parameter set, Object space accuracy.

7.5 Conclusion.. 136

7.6 References... 136

Chapter 8 **Tooth surface alignment using two methods** 139

8.1 Introduction.. 139

8.2 Method... 145

 Data acquisition and sampling, Data alignment, Mapping and alignment precision (DSMatch - Sequential alignment, Varying grid interval and exclusion threshold, Varying exclusion threshold; Polyworks - Sequential alignment, Varying grid interval and exclusion threshold, Varying exclusion threshold upon quality of alignment), Alignment precision (DSMatch, Polyworks).

8.3 Results... 151

 Data acquisition and sampling, Mapping and alignment precision (DSMatch – sequential alignment, alignment of unsampled data, varying grid interval and exclusion threshold, varying exclusion threshold; Polyworks – sequential alignment, varying grid interval and exclusion threshold, varying exclusion threshold), Alignment precision (DSMatch, Polyworks).
Table of Contents

8.4 Discussion ... 167
 Data Acquisition, Data sampling, Data alignment, Mapping and alignment precision, Varying grid interval, Varying exclusion threshold, Alignment precision.

8.5 Conclusion ... 173

8.6 References .. 173

Chapter 9 Change detection of non-carious cervical lesions from stereomagery

9.1 Introduction .. 177

 Surface alignment and change detection

9.2 Method .. 180

 Replica preparation, Data acquisition, Accuracy and precision of the 3D data acquisition, Precision of 3D data acquisition and alignment, Change detection of NCCLs.

9.3 Results ... 184

 Accuracy and precision of the 3D data acquisition, Precision of 3D data acquisition and alignment, Precision of replication, 3D data acquisition and alignment, Change detection of NCCLs (Tooth 1, Tooth 2).

9.4 Discussion ... 193

 Precision of replication, 3D data acquisition and alignment, Change detection of NCCLs.

9.5 Conclusion .. 197

9.6 References .. 197

Chapter 10 Conclusion ... 199
noncarious cervical lesion). In conclusion, it is observed that there is weak relation between the occlusal factors and the NCCLs [3]. In clinical practice, not all patients evidence that the progression of NCCL lesion is arrested, hence these restorative treatments cannot used as a preventive treatment strategy. to stop the propagation of lesion. Non-carious lesions of teeth as widespread as tooth decay. Diseases affect the sensitivity of the teeth, changing bite, affect the aesthetics of the smile. In this article we will look at the causes that trigger their occurrence, and methods of treatment of these lesions. Non-carious lesions of teeth. Classification of non-carious lesions of teeth includes two groups: Pathology that arose prior to the eruption of the teeth: anomaly of development and eruption Death of tissue starts with loss of gloss and appearance malovydne spots. With the progression of the disease areas are painted in brown color. The site of the lesion is observed a softening of the enamel and dentin pigmentation. The sensitivity increases. Typically, necrosis starts at the neck of the tooth.