The authors present hereinafter a textbook for use in a beginning course in electronics for electrical-engineering students. Most of the material used was first published in pamphlet form and has been used as a text at Purdue University for the past two years. It has been revised and brought up to date as use in the classroom and the advice of critics have indicated that improvements could be made.

The usual course in technical schools consists of two or three class periods and one laboratory period each week throughout the school year. Sufficient material is included for such a program. It has been the authors' experience that the average student enrolling in such a course has the following status: He is a junior and has already had courses in general physics, mathematics through calculus, and direct-current circuits. He is starting courses in alternating-current circuits, electrical measurements, and possibly differential equations, as well as electronics. The student plans to enter one of various fields—communications, electronic control, servomechanisms, power machinery, power transmission, business, graduate study. What he will actually do after graduation is often something else. In any event electronics will be useful knowledge for someone engaged in nearly any branch of electrical engineering and in many allied fields. The material in this book presents the fundamental ideas of electronics in both a theoretical and a practical fashion to provide a good foundation for further study, as well as useful knowledge for a terminal course.

The first four chapters provide material for a brief study of the physics of vacuum tubes, not covered in the usual previous physics courses. They also serve to delay the study of circuits until the student has gained some knowledge of a-c circuits elsewhere. Chapter 5 presents a very elementary description of the circuits and actions of certain very common electronic devices. It also acquaints the student with some common electronic nomenclature. The authors have found it fills a very real need—to provide a background for those students who have not picked it up in their experience. Even with very rapid coverage it should be valuable.

Chapter 6 presents the usual methods employed in electronic-circuit analyses, analytic and graphical. Great stress is laid on the use of the linear-equivalent-circuit theorem. Also considerable attention is paid to graphical methods with nonlinear circuits. Only elementary aspects of
this fascinating subject are presented because of the limitations of time and space.

Although in theory a student should have well in hand all the tools he has studied, as a practical matter the authors feel that a brief restatement or treatment of certain ideas often helps enough to pay for its inclusion in a volume designed principally as a textbook. Hence the short treatise on such subjects as network theorems and Fourier analysis are included. The practical use of this material begins at once in the following chapter, although for some of it the delay is great enough, as in the case of power-series expansion of plate current, so that the student will wish to refer back to the discussion again. At any rate he knows where to find the material.

The chapters following the sixth present a selection of the various aspects of electronics which can reasonably be included in a beginning course. No claim is made that all the interesting and useful developments in the field are discussed or even mentioned.

In the numerous cases in which a mathematical development is attempted, the authors have endeavored to provide, first, a facile word explanation for the behavior. Then follows the setting of current and voltage symbols, the writing of circuit equations, the solution of these, the simplifying assumptions and rearrangement needed to place the solution in a usable form (which often involves the drawing of a simplified equivalent circuit), and the final interpretation of the results. Numerous worked-out examples are provided to help in understanding. The authors feel that much practice is needed in these matters for students who plan to continue in fields allied to electronics.

The authors have freely consulted periodicals and engineering texts by many writers. They wish to acknowledge the valuable criticism and encouragement given by their colleagues. Especially do they appreciate the assistance of their former colleague, Dr. K. J. Hammerle. In addition, thanks are due the unknown critics engaged by the publisher. They have made many valuable suggestions.

George E. Happel Wilfred M. Hesselsberth
CONTENTS

Preface ... v

1. ELEkTRON BALLISTICS 1
The electron, other charged particles. Properties of charged bodies.
The electric field. Potential. Potential gradient. The behavior of an
electron in an electric field. Moving electrons in a magnetic field. Mag-
netic focusing of an electron beam. The cathode-ray tube—electrostatic
focusing. The deflection of the electron beam in a cathode-ray tube.

2. EMISSION .. 30
Structure of the atom. Free electrons in a metal. Electron escape from a
metal. The work function. The electron-volt. Contact difference in
potential. Thermionic emission. Thermionic emission from tungsten.
Thickened-tungsten filaments. Oxide-coated emitters. Schottky effect.
High-field emission. Secondary emission. Photodetector emission.

3. THE HIGH-VACUUM DIODE 49
Space charge. The diode. Experimental determination of the current in a
diode. Potential distribution in a diode with parallel plane electrodes.
Gauss' theorem. The space-charge equation. Experimental proof of the
Characteristic curves for a diode.

4. THE VACUUM TRIODE AND OTHER MULTILELEMENT TUBES 69
De Forest's triode. Triode construction. The function of the grid.
Triode characteristics. Triode coefficients. Calculation of tube coef-
ficients. Dynamic transfer characteristics. Shortcomings of the triode.
The tetrode. Tetrode characteristics. Tube coefficients for the tetrode.
Shortcomings of the tetrode. The pentode. The static characteristics of a
pentode. Dynamic transfer characteristics for a pentode. Tube coefficients
power tubes. Miscellaneous types of high-vacuum tubes.

5. SOME APPLICATIONS OF VACUUM TUBES .. 101
Radio communication. A-m transmitter system. An a-m receiver system.
The diode rectifier. The diode detector. The triode current amplifier.
The triode voltage amplifier. Two-stage voltage amplifiers with resistance-
impedance coupling between stages. Two-stage ad voltage amplifiers with
transformer coupling and cathode bias. The pentode voltage amplifier with
resistance load. The pentode voltage amplifier with tuned load. The
power amplifier. Changes of vacuum-tube amplifier operating. A phase
inverter. A push-pull power amplifier. An amplifier with a cathode load.
A feedback oscillator. A class C amplifier.

6. CONCEPTS USEFUL IN VACUUM-TUBE-CIRCUIT ANALYSIS ... 129

The triode with a plate load. Quiescent operation of the triode circuit.
Signal voltages. The grid-bias line and the dynamic-load line for passive
loads. The case of a reactive load. Variations of plate current and plate
voltage resulting from a grid signal. The dynamic characteristic. Circuit
theorems. Ohm's law. Thévenin's theorem and Norton's theorem. The
equivalent-plate-circuit theorem. An example of the construction of an
similar equivalent plate circuit. Limitations on the linear-equivalent-circuit
method of analysis. Fourier analysis of a periodic function. Graphical
harmonic analysis of plate current. Determination of the T point. Series
expansion of plate current. Distortion in vacuum-tube circuits.

7. VOLTAGE AMPLIFIERS 156

Classification of voltage amplifiers. A simple single-stage amplifier with
a plate load. The single-stage amplifier at higher frequencies. The
output impedance of a single amplifier. The input impedance to a simple
amplifier. Amplification, feedback, gain. Methods of coupling multi-
stage amplifiers. Direct-coupled amplifiers. Resonant-capacitance-coupled
amplifiers. The noise equivalent for the R-Ccoupled amplifier. Behavior
of the amplifier in the mid-frequency range. Performance of an
R-C coupled amplifier in the hf range. 1f performance. The analysis of an
R-C coupled amplifier circuit. Design considerations for an R-C coupled
amplifier. Video-frequency amplifiers. hf compensation. If compensation.
The cathode follower. Graphical treatment of cathode followers.
The grounded-grid amplifiers. Transformers with iron cores. The tran-
former with load. The transformer-coupled amplifier. Parameters in
interstage-transformer design. The single-tuned-circuit rf amplifier. The
tuned-secondary type of rf amplifier. Double-tuned transformers-coupled
rf amplifiers.

8. AUDIO-FREQUENCY POWER AMPLIFIERS ... 244

Circuit type and efficiency using class A operation. Efficiency with other
classes of operation. Optimum load and bias for a class A1 amplifier.
Graphical determination of the best operation for a class A1 triode ampli-
fier. Designing a class A1, triple-power amplifier using a tube manual.
Class A, amplifiers using push-pulls and beam power tubes. Parallel oper-
ation of tubes. Push-pull operation. bias values and loads for push-pull
operation. Class B amplifiers.

9. POWER AMPLIFIERS USING TUNED LOADS ... 280

Operation for high efficiency. The plate-load circuit. An algebraic anal-
ysis of class B amplifier operation. Graphical analysis of class B and class C
amplifiers. The operation and adjustment of a tuned power amplifier.
CONTENTS

10. FEEDBACK AMPLIFIERS

11. OSCILLATORS

12. MODULATION AND DETECTION

13. CONDUCTION THROUGH GASES

14. RECTIFIERS

15. PHOTOELECTRIC CELLS

16. SOLID-STATE ELECTRONICS AND REACTANCE AMPLIFIERS

APPENDIX A. CHARACTERISTIC CURVES FOR SEVERAL TUBES

APPENDIX B. R-C-COUPLED AMPLIFIER DESIGN CHARTS

APPENDIX C. A TABLE OF SYMBOLS

INDEX
Electronics engineering is a professional engineering discipline that deals with the emission, behavior, and effects of electrons (as in electron tubes and transistors) and with electronic devices, systems or equipment. The term also now covers the larger part of electrical engineering degree courses as studied at most European universities. Its practitioners are called electronics engineers in Europe. In the Americas the term electrical engineer is used to describe the same work.