MEMORIAL
ENOS J. PERRY

Enos J. Perry, 92, extension professor emeritus of dairy husbandry at Cook College, Rutgers, The State University of New Jersey, died on September 18, 1983.

Perry's greatest contribution to agriculture was in artificial breeding of cattle. During a 3-month sabbatical in 1937, he studied dairy farming and herd management practices in Europe, chiefly Denmark. There he witnessed the first efforts to apply artificial breeding on a broad scale. Perry sensed the potential that existed for improving the quality of dairy cattle by the greater use of better bulls. When he returned from Denmark, he urged and was instrumental in helping local breeders to initiate the first cattle breeding organization to use artificial insemination in the United States, originating as Cooperative Breeding Association No. 1 in Clinton, NJ on May 17, 1938.

His educational leadership in dairy husbandry and his pioneering efforts in the breeding and improvement of dairy cattle were both significant contributions to world agriculture. Perry's book, The Artificial Insemination of Farm Animals, was translated into many foreign languages and is now in its fourth printing. He was also author or coauthor of numerous scientific bulletins, circulars, and papers. Perry was a popular speaker on the topics of progressive cattle breeding and herd improvement programs, and he participated in three international meetings of livestock scientists.

Perry was born on a farm near Stewarts-town, PA. He earned a B.S. degree (dairy husbandry) at Penn State College in 1916 and an M.A. degree (economics) at Columbia University in 1928. Perry began his career in extension at Penn State College, serving from 1916 until 1920 as a county agricultural agent in Tioga County. He was a dairy extension specialist on the staff of West Virginia University from 1920 until 1923; then he joined the dairy husbandry extension staff at Rutgers, remaining there until 1956. Following retirement, he served for 3½ years as livestock advisor for the International Cooperation Administration, working in Egypt, Lebanon, Brazil, and Washington, DC.

Perry served for 3 years as a director of the American Dairy Science Association and was chairman of the Breeding Committee for 10 years. He was a member of the American Society of Animal Production and a Fellow of the American Association for the Advancement of Science. He received numerous citations and honors including the first DeLaval Achievement Award in Dairy Extension in 1951, the Supervisor Service Award from the US Department of Agriculture in 1949, and other awards from Penn State, Cook College, the New Jersey Department of Agriculture, the Northeast Breeding Association, the National Dairy Shrine, and the Italian government. Perry was awarded an honorary doctorate of science on March 10, 1980 by Rutgers, The State University of New Jersey. On June 21, 1983, Perry spoke with delightful vigor on the development of artificial insemination in dairy cattle in the United States at the dedication of the Enos J. Perry Seminar Conference Room, Animal Sciences Department, Cook College. In April 1984, he will be inducted into the National Agriculture Hall of Fame.

His wife, Alberta Vail Perry, died in 1977. Surviving are three children, Howard, Wilbur, and Marjorie; two sisters, Mary and Harriet; and one brother, Howard.
Artificial insemination (AI) - one of the most important techniques ever devised for the genetic improvement of farm animals - is a widely used tool for livestock breeding and management programs and is a process by which sperm are collected from the male, processed, stored and artificially introduced into the female reproductive tract for the purpose of conception. Artificial insemination has been most widely used for breeding dairy cattle and pigs and has made bulls of high genetic merit available to all. It has been used to facilitate the reproductive success and conservation of threatened or endangered animals. Artificial Insemination in Farm Animals. Determined by using fluorescent microspheres. Although several stains can be used, staining spermatozoa of farm animals for morphological examination is usually combined with membrane integrity assessment using a dye that is excluded by live cells, such as eosin (Figure 1). Therefore, besides being helpful.