Application of Variational Iteration Method
to a General Riccati Equation

B. Batiha, M. S. M. Noorani and I. Hashim

School of Mathematical Sciences
National University of Malaysia
43600 UKM Bangi Selangor, Malaysia
belalbatiha2002@yahoo.com
msn@ukm.my
ishak_h@ukm.my

Abstract

In this paper, the variational iteration method (VIM) is applied to the solution of general Riccati differential equations. The equations under consideration includes one with variable coefficient and one in matrix form. In VIM, a correction functional is constructed by a general Lagrange multiplier which can be identified via a variational theory. The VIM yields an approximate solution in the form of a quickly convergent series. Comparisons with exact solution and the fourth-order Runge-Kutta method show that the VIM is a powerful method for the solution of nonlinear equations. The present paper may be a suitable and fruitful exercise for teaching and better understanding techniques in advanced undergraduate courses on classical mechanics.

Mathematics Subject Classification: 65L05, 65L06, 35A15

Keywords: Riccati equation, Variational iteration method, Runge-Kutta method

1 Introduction

The Riccati differential equation is named after the Italian nobleman Count Jacopo Francesco Riccati (1676–1754). The book of Reid [22] contains the fundamental theories of Riccati equation, with applications to random processes,
optimal control, and diffusion problems. Besides important engineering science applications that today are considered classical, such as stochastic realization theory, optimal control, robust stabilization, and network synthesis, the newer applications include such areas as financial mathematics [3, 18]. The solution of this equation can be reached using classical numerical methods such as the forward Euler method and Runge-Kutta method. An unconditionally stable scheme was presented by Dubois and Saidi [7]. El-Tawil et al. [4] presented the usage of Adomian decomposition method (ADM) to solve the nonlinear Riccati in an analytic form. Very recently, Tan and Abbasbandy [24] employed the analytic technique called Homotopy Analysis Method (HAM) to solve a quadratic Riccati equation.

The aim of this paper, is to continue the analysis of VIM on different types of Riccati differential equations. In particular, we give 5 examples of Riccati differential equations which include one with variable coefficient and one in matrix form. Numerical comparison between VIM, RK4 and exact solution on these equations are given. We think that, this paper can be used to convey to students the idea that the VIM is a powerful tools for approximately solving linear and nonlinear
2 Variational iteration method

This method, which is a modified general Lagrange’s multiplier method [10], has been shown to solve effectively, easily and accurately a large class of nonlinear problems [11, 13, 15, 16, 12, 14, 23, 2, 20, 5]. The main feature of the method is that the solution of a mathematical problem with linearization assumption is used as initial approximation or trial function. Then a more highly precise approximation at some special point can be obtained. This approximation converges rapidly to an accurate solution. To illustrate the basic concepts of the VIM, we consider the following nonlinear differential equation:

$$Lu + Nu = g(x),$$ \hfill (1)

where L is a linear operator, N is a nonlinear operator, and $g(x)$ is an inhomogeneous term. According to the VIM [15, 16, 12, 14], we can construct a correction functional as follows:

$$u_{n+1}(x) = u_n(x) + \int_0^x \lambda \{ Lu_n(\tau) + N \tilde{u}_n(\tau) - g(\tau) \} d\tau,$$ \hfill (2)

where λ is a general Lagrangian multiplier [10], which can be identified optimally via the variational theory, the subscript n denotes the nth-order approximation, \tilde{u}_n is considered as a restricted variation [15, 16, 12], i.e. $\delta \tilde{u}_n = 0$.

3 Analysis of general Riccati differential equation

In this paper, we present numerical and analytical solutions for the general Riccati differential equation [21]:

$$\frac{dy}{dt} = Q(t)y + R(t)y^2 + P(t), \quad y(0) = G(t),$$ \hfill (3)

where $Q(t)$, $R(t)$, $P(t)$ and $G(t)$ are scalar functions. To solve equation (3) by means of He’s variational iteration method, we construct a correction functional,

$$y_{n+1}(t) = y_n(t) + \int_0^t \lambda(s) \left[\frac{dy_n(s)}{ds} - Q(s)\tilde{y}_n(s) \right] ds,$$

$$\delta y_{n+1}(t) = \delta y_n(t) + \delta \int_0^t \lambda(s) \left[\frac{dy_n(s)}{ds} - Q(s)\tilde{y}_n(s) \right] ds,$$
\[
\delta y_{n+1}(t) = \delta y_n(t) + \delta \int_0^t \lambda(s) \left[\frac{dy_n(s)}{ds} \right] ds,
\]
\[
\delta y_{n+1}(t) = (1 + \lambda)\delta y_n(t) - \int_0^t \delta y_n(s) \lambda'(s) ds = 0,
\]
where \(\tilde{y}_n \) is considered as restricted variations, which mean \(\delta \tilde{y}_n = 0 \). Its stationary conditions can be obtained as follows
\[
1 + \lambda(t) = 0, \quad \lambda'(s)|_{s=t} = 0. \tag{4}
\]
The Lagrange multipliers, therefore, can be identified as \(\lambda(s) = -1 \) and the following variational iteration formula is obtained
\[
y_{n+1}(t) = y_n(t) - \int_0^t \left[\frac{dy_n(s)}{ds} - Q(s)y_n(s) - R(s)y_n^2(s) - P(s) \right] ds. \tag{5}
\]

4 Numerical examples

4.1 Example 1

Consider the following example:
\[
\frac{dy}{dt} = -y^2(t) + 1, \quad y(0) = 0. \tag{6}
\]
Here \(Q(t) = 0, R(t) = -1, P(t) = 1 \) and \(G(t) = 0 \). The exact solution was found to be [4]:
\[
y(t) = \frac{e^{2t} - 1}{e^{2t} + 1}. \tag{7}
\]
To solve equation (6) by means of He’s variational iteration method, we construct a correction functional (see (5)),
\[
y_{n+1}(t) = y_n(t) - \int_0^t \left[\frac{dy_n(s)}{ds} + y_n^2 - 1 \right] ds. \tag{8}
\]
We can take the linearized solution \(y(t) = t + C \) as the initial approximation \(y_0 \), the condition \(y(0) = 0 \) gives us \(C = 0 \). Then we get:
\[
y_1(t) = t - \frac{1}{3}t^3,
\]
In the same manner, the rest of the components of the iteration formulae (8) can be obtained using the Maple Package.

4.2 Example 2

Consider this simple example:

\[
\frac{dy}{dt} = 2y(t) - y^2(t) + 1, \quad y(0) = 0.
\]

(9)

Here \(Q(t) = 2\), \(R(t) = -1\), \(P(t) = 1\) and \(G(t) = 0\).

The exact solution was found to be [4]:

\[
y(t) = 1 + \sqrt{2} \tanh \left(\sqrt{2}t + \frac{1}{2} \log \left(\frac{\sqrt{2} - 1}{\sqrt{2} + 1} \right) \right).
\]

(10)

To solve equation (9) using VIM, we construct a correction functional (see (5)),

\[
y_{n+1}(t) = y_n(t) - \int_0^t \left[\frac{dy_n}{ds} - 2y_n + y_n^2 - 1 \right] \, ds.
\]

(11)

We can take the linearized solution \(y(t) = -\frac{t}{2} + e^{2t}C\) as the initial approximation \(y_0\), the condition \(y_0\) gives us \(C = 0.5\). Then we get:

\[
y_1(t) = -0.6875 + 0.75e^{2t} - 0.0625e^{4t} - \frac{1}{8}\ln e^{2t},
\]

\[
y_2(t) = -0.995605468750 + 0.75e^{2t} - 0.0625e^{4t} - \frac{1}{8}\ln e^{2t}
-0.59765625t - 0.12890625e^{4t} - 0.10546875\ln(e^{4t})^2
+0.421875e^{2t} + 0.015625e^{6t} + 0.09375e^{2t}\ln e^{2t}
-0.0026041666667\ln(e^{2t})^3 - 0.00390625e^{4t}\ln e^{2t}
-0.00048828125e^{8t}.
\]

Again, the rest of the components of the iteration formulae (11) can be obtained using the Maple Package.
4.3 Example 3

Consider the example [19]:

$$\frac{dy}{dt} = t^2 + y^2(t), \quad y(0) = 1,$$ \hspace{1cm} (12)

where $Q(t) = 0$, $R(t) = 1$, $P(t) = t^2$ and $G(t) = 1$. To solve equation (12) using variational iteration method, we construct a correction functional,

$$y_{n+1}(t) = y_n(t) - \int_0^t \left[\frac{dy_n}{ds} - s^2 + y_n^2 \right] ds.$$ \hspace{1cm} (13)

We can take the linearized solution $y(t) = \frac{t^3}{3} + C$ as the initial approximation y_0, the condition $y(0) = 1$ gives us $C = 1$. Then we get:

$$y_1(t) = \frac{1}{63} t^7 + \frac{1}{6} t^4 + t^3 + t + 1,$$

$$y_2(t) = t + t^2 + \frac{4}{3} t^3 + \frac{1}{2} t^4 + \frac{7}{15} t^5 + \frac{1}{18} t^6 + \frac{1}{7} t^7 + \frac{23}{504} t^8 + \frac{5}{756} t^9 + \frac{2}{693} t^{11} + \frac{1}{2268} t^{12} + \frac{1}{59535} t^{15} + 1.$$

The rest of the components of the iteration formulae (13) can be obtained using the Maple Package.

4.4 Example 4

Consider the following variable coefficient example:

$$\frac{dy}{dt} = t^3 y^2(t) - 2t^4 y(t) + t^5 + 1, \quad y(0) = 0,$$ \hspace{1cm} (14)

where $Q(t) = -2t^4$, $R(t) = t^3$, $P(t) = t^5 + 1$ and $G(t) = 0$. The exact solution is:

$$y(t) = t.$$ \hspace{1cm} (15)

In order to solve equation (14) by using He’s variational iteration method, we construct a correction functional (see (5)),

$$y_{n+1}(t) = y_n(t) - \int_0^t \left[\frac{dy_n}{ds} - s^3 y_n^2 + 2s^4 y_n - s^5 - 1 \right] ds.$$ \hspace{1cm} (16)
As before we can take the linearized solution \(y(t) = t + C \) as the initial approximation \(y_0 \), the condition \(y(0) = 0 \) gives us \(C = 0 \). Then we get:

\[
y_1(t) = t,
\]

which is the exact solution.

4.5 Example 5

The following example of a matrix Riccati differential equation is due to [4]:

\[
\frac{dy}{dt} = -y^2(t) + Q, \quad y(0) = 0,
\]

where

\[
Q = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 100 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}.
\]

(18)

To find the solution of this equation via VIM, we shall treat the matrix equation as a system of differential equations. So, we rewrite Eq.(17) as system of equations:

\[
\frac{dy_{11}}{dt} = -[y_{11}^2(t) + y_{12}(t)y_{21}(t)] + \frac{101}{2},
\]

(19)

\[
\frac{dy_{12}}{dt} = -[y_{11}(t)y_{12}(t) + y_{12}(t)y_{22}(t)] - \frac{99}{2},
\]

(20)

\[
\frac{dy_{21}}{dt} = -[y_{11}(t)y_{12}(t) + y_{12}(t)y_{22}(t)] - \frac{99}{2},
\]

(21)

\[
\frac{dy_{22}}{dt} = -[y_{11}^2(t) + y_{12}(t)y_{21}(t)] + \frac{101}{2}.
\]

(22)

To solve equations (19), (20), (21) and (22) by means of He’s variational iteration method, we construct a correction functional,

\[
y_{11,n+1}(t) = y_{11,n}(t) + \int_0^t \lambda_{11}(s) \left[\frac{dy_{11,n}}{ds} + \frac{101}{2} \right] ds,
\]

(23)

\[
y_{12,n+1}(t) = y_{12,n}(t) + \int_0^t \lambda_{12}(s) \left[\frac{dy_{12,n}}{ds} + \frac{99}{2} \right] ds,
\]

(24)
\[y_{21,n+1}(t) = y_{21,n}(t) + \int_0^t \lambda_{21}(s) \left[\frac{dy_{21,n}}{ds} + \tilde{y}_{11,n} \tilde{y}_{12,n} \right] ds + \tilde{y}_{12,n} \tilde{y}_{22,n} + \frac{99}{2} ds, \quad (25) \]

\[y_{22,n+1}(t) = y_{22,n}(t) + \int_0^t \lambda_{22}(s) \left[\frac{dy_{22,n}}{ds} + \tilde{y}_{11,n} \right] ds + \tilde{y}_{12,n} \tilde{y}_{21,n} - \frac{101}{2} ds, \quad (26) \]

where \(\tilde{y}_{ij,n} \) are considered as restricted variation i.e. \(\delta y_{ij,n} = 0 \). Its stationary conditions can be obtained as:

\[1 + \lambda_{11}(t) = 0, \quad \lambda'_{11}(s) \big|_{s=t} = 0, \quad (27) \]

\[1 + \lambda_{12}(t) = 0, \quad \lambda'_{12}(s) \big|_{s=t} = 0, \quad (28) \]

\[1 + \lambda_{21}(t) = 0, \quad \lambda'_{21}(s) \big|_{s=t} = 0, \quad (29) \]

\[1 + \lambda_{22}(t) = 0, \quad \lambda'_{22}(s) \big|_{s=t} = 0. \quad (30) \]

Thus, the Lagrange multipliers are \(\lambda_{11}(s), \lambda_{12}(s), \lambda_{21}(s) \) and \(\lambda_{22}(s) = -1 \).

We can take the linearized solution \(y_{11}(t) = \frac{101t}{2} + A, y_{12}(t) = \frac{-99t}{2} + B, y_{21}(t) = \frac{-99t}{2} + C \) and \(y_{11}(t) = \frac{101t}{2} + D \) as the initial approximation, the condition \(y(0) = 0 \) gives us \(A, B, C \) and \(D = 0 \). Then we get:

\[y_{11,1}(t) = 101t - \frac{10001}{2}t^3, \]

\[y_{12,1}(t) = -99t + \frac{9999}{2}t^3, \]

\[y_{21,1}(t) = -99t + \frac{9999}{2}t^3, \]

\[y_{22,1}(t) = 101t - \frac{10001}{2}t^3. \]

In the same manner, the rest of the components of the iteration formulae can be obtained using the Maple Package.

5 Numerical results and discussion

We now obtain numerical solutions of Riccati differential equation. Table 1 shows comparison between the 3-iterate of VIM and the exact solution for example 1. Table 2 shows comparison between the 3-iterate of VIM and the exact solution for example 2. Table 3 shows comparison between the 2-iterate of VIM, Taylor matrix, Runge-Kutta, Picard and Euler method. Table 4 shows comparison between the 8-iterate VIM and RK4 for example 5. In Table 4 we use the Padé approximation [10,10] for 8-iterate VIM.
Table 1: Numerical comparisons for example 1

<table>
<thead>
<tr>
<th>t</th>
<th>Exact solution</th>
<th>3-Iterate VIM</th>
<th>absolute error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.0996679946</td>
<td>0.0996679946</td>
<td>5.000E-11</td>
</tr>
<tr>
<td>0.2</td>
<td>0.1973753203</td>
<td>0.1973753160</td>
<td>4.300E-9</td>
</tr>
<tr>
<td>0.3</td>
<td>0.2913126124</td>
<td>0.2913124564</td>
<td>1.560E-7</td>
</tr>
<tr>
<td>0.4</td>
<td>0.3799489622</td>
<td>0.3799469862</td>
<td>1.976E-6</td>
</tr>
<tr>
<td>0.5</td>
<td>0.4621171572</td>
<td>0.462103328</td>
<td>1.382E-5</td>
</tr>
<tr>
<td>0.6</td>
<td>0.5370495670</td>
<td>0.5369833784</td>
<td>6.619E-5</td>
</tr>
<tr>
<td>0.7</td>
<td>0.6043677771</td>
<td>0.6041244734</td>
<td>2.433E-4</td>
</tr>
<tr>
<td>0.8</td>
<td>0.6640367702</td>
<td>0.6633009217</td>
<td>7.358E-4</td>
</tr>
<tr>
<td>0.9</td>
<td>0.7162978702</td>
<td>0.7143823394</td>
<td>1.916E-3</td>
</tr>
<tr>
<td>1.0</td>
<td>0.7615941560</td>
<td>0.7571662670</td>
<td>4.428E-3</td>
</tr>
</tbody>
</table>

Table 2: Numerical comparisons for example 2

<table>
<thead>
<tr>
<th>t</th>
<th>Exact solution</th>
<th>3-Iterate VIM</th>
<th>absolute error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.1102951967</td>
<td>0.1102952165</td>
<td>1.980E-8</td>
</tr>
<tr>
<td>0.2</td>
<td>0.2419767992</td>
<td>0.2419778311</td>
<td>1.032E-6</td>
</tr>
<tr>
<td>0.3</td>
<td>0.3951048481</td>
<td>0.3951137053</td>
<td>8.857E-6</td>
</tr>
<tr>
<td>0.4</td>
<td>0.5678121656</td>
<td>0.5678455104</td>
<td>3.334E-5</td>
</tr>
<tr>
<td>0.5</td>
<td>0.7560143925</td>
<td>0.756089992</td>
<td>7.260E-5</td>
</tr>
<tr>
<td>0.6</td>
<td>0.9535662155</td>
<td>0.953660314</td>
<td>9.982E-5</td>
</tr>
<tr>
<td>0.7</td>
<td>1.1529489660</td>
<td>1.1530347490</td>
<td>8.848E-5</td>
</tr>
<tr>
<td>0.8</td>
<td>1.346363550</td>
<td>1.3463791070</td>
<td>1.545E-5</td>
</tr>
<tr>
<td>0.9</td>
<td>1.5269113120</td>
<td>1.5264118730</td>
<td>4.994E-4</td>
</tr>
<tr>
<td>1.0</td>
<td>1.6894983900</td>
<td>1.6860271340</td>
<td>3.471E-3</td>
</tr>
</tbody>
</table>

Table 3: Numerical comparisons for example 3

<table>
<thead>
<tr>
<th>Method</th>
<th>$t = 0.5$</th>
<th>$t = 0.90$</th>
<th>$t = 0.95$</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.183000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-iterate VIM</td>
<td>1.964676823</td>
<td>4.406704915</td>
<td>4.940949522</td>
</tr>
</tbody>
</table>
Table 4: Numerical comparisons for example 4 between 4-iterate VIM and RK4 with $h = 0.001$.

<table>
<thead>
<tr>
<th>t</th>
<th>y_{11}</th>
<th>y_{12}</th>
<th>y_{21}</th>
<th>y_{22}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>0.1</td>
<td>3.85780</td>
<td>3.85780</td>
<td>-3.7581</td>
<td>-3.7581</td>
</tr>
<tr>
<td>0.2</td>
<td>4.91883</td>
<td>4.91883</td>
<td>-4.7215</td>
<td>-4.7215</td>
</tr>
<tr>
<td>0.3</td>
<td>5.12093</td>
<td>5.12093</td>
<td>-4.8296</td>
<td>-4.8296</td>
</tr>
<tr>
<td>0.4</td>
<td>5.18662</td>
<td>5.18662</td>
<td>-4.8067</td>
<td>-4.8067</td>
</tr>
<tr>
<td>0.5</td>
<td>5.23056</td>
<td>5.23060</td>
<td>-4.7685</td>
<td>-4.7685</td>
</tr>
<tr>
<td>0.6</td>
<td>5.26821</td>
<td>5.26846</td>
<td>-4.7312</td>
<td>-4.7314</td>
</tr>
<tr>
<td>0.7</td>
<td>5.30126</td>
<td>5.30218</td>
<td>-4.6971</td>
<td>-4.6978</td>
</tr>
<tr>
<td>0.8</td>
<td>5.32945</td>
<td>5.33202</td>
<td>-4.6660</td>
<td>-4.6680</td>
</tr>
<tr>
<td>0.9</td>
<td>5.35223</td>
<td>5.35815</td>
<td>-4.6372</td>
<td>-4.6419</td>
</tr>
<tr>
<td>1.0</td>
<td>5.36903</td>
<td>5.38080</td>
<td>-4.6100</td>
<td>-4.6192</td>
</tr>
</tbody>
</table>

6 Conclusions

In this paper, variation iteration method (VIM) has been successfully applied to find the approximate solution of the general Riccati differential equation. The method was used in a direct way without using linearization, perturbation or restrictive assumptions. It may be concluded that VIM is very powerful and efficient in finding analytical as well as numerical solutions for wide classes of linear and nonlinear differential equations. It provides more realistic series solutions that converge very rapidly in real physical problems. Therefore, it could be easily included in lectures on classical mechanics for undergraduate students.

Acknowledgement

The financial support received from the Academy of Sciences Malaysia under the SAGA grant no. P24c is gratefully acknowledged.

References

References

Received: March 17, 2007