Library of Congress Cataloging-in-Publication Data

Eranti, Esa M.
Cold region structural engineering.

Bibliography: p.
Includes index.
1. Structural engineering — Cold weather conditions.
I. Lee, George C. II. Title.
TA636.E73 1986 624.1'0911 85-16797
ISBN 0-07-037034-6

Copyright © 1986 by McGraw-Hill, Inc. All rights reserved.
Printed in the United States of America. Except as permitted
under the United States Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or by
any means, or stored in a data base or retrieval system, without
the prior written permission of the publisher.

1234567890 DOC/DOC 8932109876

ISBN 0-07-037034-6

The editors for this book were Joan Zseleczky and Ingeborg M. Stochmal,
the designer was Naomi Auerbach, and the production supervisor
was Sally Flies. It was set in Caledonia by Progressive Typographers.

Printed and bound by R. R. Donnelley & Sons, Inc.
CONTENTS

Preface ix

Chapter 1 ENVIRONMENT AND DEVELOPMENT 1

1.1 Introduction 1
1.2 The Climate 4
1.3 The Environment 8
1.4 Engineering Considerations 12

Chapter 2 SNOW AND ICING PROBLEMS 16

2.1 Characteristics of Snow Covers 16
2.2 Snow Loads 18
2.3 Snow Control 24
2.4 Construction on Snowfields 27
2.5 Avalanches 32
2.6 Icing on Structures 36

Chapter 3 ICE PROBLEMS 45

3.1 Ice and Engineering 45
3.2 Description of Ice Covers 50
 3.2.1 Ice Classification 50
 3.2.2 Some Features of Lake and Sea Ice Covers 53
 3.2.3 Ice Covers in Rivers 60
3.3 Deformation and Strength Properties of Ice 65
 3.3.1 Microstructure and Mechanical Properties 65
 3.3.2 Elastic Behavior 67
 3.3.3 Viscoelastic Behavior 69
 3.3.4 Strength of Ice 72
3.4 Bearing Capacity of Ice Cover 76
 3.4.1 General Considerations 76
 3.4.2 Analytical Solutions 77
3.4.3 Moving Loads
3.4.4 Behavior of the Ice Cover under Static Loads
3.4.5 Methods to Thicken and Strengthen the Ice Cover Artificially

3.5 Ice Forces on Structures
- **3.5.1 Vertical Ice Forces Due to Water-Level Fluctuations**
- **3.5.2 Thermal Ice Pressures**
- **3.5.3 External Forces on Ice Cover**
- **3.5.4 Static Ice Forces on Isolated Structures Due to Slow Horizontal Movements of the Ice Cover**
- **3.5.5 Dynamic Ice Forces on Isolated Narrow Vertical Structures**
- **3.5.6 Ice Forces on Sloping Structures**
- **3.5.7 Pressure Ridges**
- **3.5.8 Ice Forces against Wide Structures**
- **3.5.9 Icebergs, Ice Islands, and Other Multiyear Ice Features**
- **3.5.10 Local Ice Pressures**

3.6 Ice Control and Structural Design
- **3.6.1 Ice Control in Rivers**
- **3.6.2 Ice Problems in Power Generation**
- **3.6.3 Some Aspects of Harbor Design**
- **3.6.4 Some Engineering Problems Related to Winter Navigation**
- **3.6.5 Ice and Offshore Hydrocarbon Development**

Chapter 4 FROST

4.1 Seasonal Frost and Permafrost
- **4.1.1 Frozen Soil Classification**
- **4.1.2 Frost Features**
- **4.1.3 Frost and Engineering**

4.2 Properties of Frozen Ground
- **4.2.1 Strength Properties**
- **4.2.2 Deformation Properties**
- **4.2.3 Thermal Properties**

4.3 Ground Thermal Regime
- **4.3.1 Steady-State Solutions**
- **4.3.2 Progress of Freeze-Thaw Boundary**

4.4 Frost Action
- **4.4.1 Frost Heaving**
- **4.4.2 Thaw Consolidation**
- **4.4.3 Thaw Weakening**

4.5 Measurement of Frost-Related Properties of Soils

4.6 Foundation Design
- **4.6.1 Foundations for Seasonal Frost Areas**
- **4.6.2 Foundations for Permafrost Areas**

4.7 Frost Action on Roads
- **4.7.1 Pavement Failures**
- **4.7.2 Design against Frost Action**
- **4.7.3 Drainage**

4.8 Utility Lines
- **4.8.1 Utility Lines in Seasonal Frost**
- **4.8.2 Utility Lines in Permafrost Areas**
4.9 Special Constructions in Permafrost Areas
4.9.1 Pipelines
4.9.2 Tunnels
4.9.3 Dams
4.9.4 Coastal and Offshore Structures
4.10 Numerical Method for Frost Problems
4.10.1 Equation of Simultaneous Heat and Moisture Flux
4.10.2 Finite Element Formulation
4.10.3 Examples of Numerical Solutions

Chapter 5 CONSTRUCTION MATERIALS

5.1 Steel
5.1.1 Fracture Toughness and Other Considerations
5.1.2 Methods to Measure Fracture Toughness
5.1.3 Manufacturing Effects
5.1.4 Design Based on Fracture Mechanics
5.1.5 General Design Criteria
5.2 Concrete
5.2.1 Freezing of Fresh Concrete
5.2.2 Admixtures
5.2.3 Cracking and Drying
5.2.4 Effects of Low Temperatures on the Properties of Hardened Concrete
5.2.5 Effects of Freeze-Thaw Cycles on the Properties of Concrete
5.2.6 Special Applications
5.3 Wood
5.4 Aluminum
5.5 Plastics
5.6 Other Materials

Chapter 6 OTHER DESIGN CONSIDERATIONS

6.1 Thermal Insulation
6.1.1 Conduction
6.1.2 Air Leaks
6.1.3 Optimum Insulation
6.2 Moisture and Condensation
6.2.1 Vapor Diffusion and Condensation
6.2.2 Other Moisture Sources
6.2.3 Practical Moisture Control
6.3 Thermal Stresses
6.4 Fire
6.5 Some Roof Design Considerations
6.6 Some General Design Aspects

Chapter 7 COLD WEATHER CONSTRUCTION: TECHNIQUES AND RESTRICTIONS

7.1 Feasibility Considerations
7.2 Earthworks and Foundation Construction 410
7.2.1 Winter Excavation Operations in Seasonal Frost Areas 414
7.2.2 Excavation in Permafrost Areas 423
7.2.3 Earth Handling and Placement 425
7.2.4 Foundation Construction and Seasonal Frost 437
7.2.5 Foundation Construction in Permafrost Areas 439
7.3 Concrete Construction in Winter Conditions 446
7.3.1 Manufacturing 446
7.3.2 Delivery and Pouring 448
7.3.3 Protecting, Heating, and Curing 452
7.3.4 Quality Control 460
7.3.5 Joining Precast Concrete Elements 461
7.3.6 New Developments 463
7.4 Other Considerations 465
7.4.1 Steel Construction 465
7.4.2 Masonry Work 465
7.4.3 Roofing 468
7.4.4 Interior Work in Buildings 469

Chapter 8 CONSTRUCTION PROJECTS IN COLD ENVIRONMENTS 473
8.1 Year-Round Construction in Developed Subarctic Areas 473
8.2 Construction Projects in Arctic Environment 479
8.2.1 Seasonal Restrictions 479
8.2.2 Problems in Project Management 486
8.2.3 Project Execution and Construction Methods 489

Bibliography 502
Unit Conversion Table 519
Index 523
Because of the many research interests among its faculty, the Center for Cold Regions Engineering, Science, and Technology (CREST) was formally established at the State University of New York at Buffalo in 1979. The areas of expertise of the participants at the Center cover a wide range of fields in engineering and in the natural sciences. Shortly after the formation of CREST, the first author joined the engineering school as a research associate, working with the second author on a cold region structural engineering research project. During 1979 we held extensive discussions and concluded that there is a lack of published material summarizing available information on structural design and construction in cold regions. This led to our collaborative effort to collect and review available information and to the publication of two summary reports, "Introduction to Ice Problems in Civil Engineering" and "Introduction to Cold Regions Structural Design and Construction," which formed the basis of this book.

The field of cold region engineering covers a wide range of topical areas; however, it is not possible to summarize all the information in a single volume. Therefore, we do not claim that this book is, in any way, all inclusive. We have concentrated our efforts on some of the cold region engineering areas that have relatively practical significance. Special attention has been given to alternative engineering solutions and practical approaches, including simple design formulas, graphs, and tables. The theoretical backgrounds of selected problem areas are also briefly discussed as introductions to the subjects.

Because cold region engineering is multidisciplinary and international in nature, we have attempted to include most of the relevant information from North America, Scandinavia, and, to the extent possible, the Soviet Union, in order to provide the reader with a relatively uniform view of
some of the most feasible approaches and solutions to cold region engineering problems.

Although much emphasis has been given to practical engineering approaches, this book can also be used as a reference book in cold region engineering courses. The list of references contained in this book is fairly extensive, and it should be useful for those interested in furthering their understanding of the current state of the art.

In our effort to collect and digest the available information, we received invaluable assistance from the U.S. Army Cold Regions Research and Engineering Laboratory and the Technical Research Centre of Finland. It would not have been possible for us to complete the manuscript without the technical information provided to us by these two organizations. Further, we would like to acknowledge the support of the State University of New York at Buffalo and of Erkki Juva Consulting Engineers and Finn-Stroi Ltd. of Finland. We would also like to express our appreciation to a number of individuals who assisted us in various capacities during the preparation of the manuscript, including Jenn-Shin Hwang, Helen Liu, Liisa Viitanen, Leena-Marjut Rautio, and Pat Doeing.

Esa Eranti
George C. Lee